Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
1.
Water Res ; 252: 121195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290236

RESUMO

Successful in situ chemical oxidation (ISCO) applications require real-time monitoring to assess the oxidant delivery and treatment effectiveness, and to support rapid and cost-effective decision making. Existing monitoring methods often suffer from poor spatial coverage given a limited number of boreholes in most field conditions. The ionic nature of oxidants (e.g., permanganate) makes time-lapse electrical resistivity tomography (ERT) a potential monitoring tool for ISCO. However, time-lapse ERT is usually limited to qualitative analysis because it cannot distinguish between the electrical responses of the ionic oxidant and the ionic products from contaminant oxidation. This study proposed a real-time quantitative monitoring approach for ISCO by integrating time-lapse ERT and physics-based reactive transport models (RTM). Moving past common practice, where an electrical-conductivity anomaly in an ERT survey would be roughly linked to concentrations of anything ionic, we used PHT3D as our RTM to distinguish the contributions from the ionic oxidant and the ionic products and to quantify the spatio-temporal evolution of all chemical components. The proposed approach was evaluated through laboratory column experiments for trichloroethene (TCE) remediation. This ISCO experiment was monitored by both time-lapse ERT and downstream sampling. We found that changes in inverted bulk electrical conductivity, unsurprisingly, did not correlate well with the observed permanganate concentrations due to the ionic products. By integrating time-lapse ERT and RTM, the distribution of all chemical components was satisfactorily characterized and quantified. Measured concentration data from limited locations and the non-intrusive ERT data were found to be complementary for ISCO monitoring. The inverted bulk conductivity data were effective in capturing the spatial distribution of ionic species, while the concentration data provided information regarding dissolved TCE. Through incorporating multi-source data, the error of quantifying ISCO efficiency was kept at most 5 %, compared to errors that can reach up to 68 % when relying solely on concentration data.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Compostos de Manganês , Óxidos , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Oxirredução , Oxidantes , Tomografia
2.
Environ Sci Pollut Res Int ; 31(6): 9421-9432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191731

RESUMO

As the representative volatile chlorinated hydrocarbons detected in wastewater, the removal of composite chlorinated ethenes is a major challenge in wastewater treatment. In the present study, an efficient removal system for composite chlorinated ethenes was reported, in which gallic acid was used to enhance the activation of persulfate by Fe/Ni nanoparticles. The influences of gallic acid-Fe/Ni and persulfate concentrations, initial pH value, reaction temperature, inorganic anions, and natural organic matters were evaluated in the composite chlorinated ethenes removal. Our results showed that the gallic acid-Fe/Ni-persulfate system with 9.0 mM of gallic acid-Fe/Ni and 30.0 mM of persulfate yielded about 100% trichloroethylene removal and 97.3%-98.6% perchloroethylene removal in the pH range of 3.0-12.0. Electron paramagnetic resonance analysis and radical quenching experiments indicated that SO4•- and •OH were the predominant radical species under acidic and alkaline conditions. Ultraviolet visible spectroscopy and inductively coupled plasma optical emission spectrometer tests revealed the Fe-gallic acid chelation could regulate the concentration of iron ions and improve the reactivity of gallic acid-Fe/Ni. These results demonstrated that the gallic acid-Fe/Ni-persulfate system was a promising strategy for treating composite chlorinated ethenes-containing wastewater.


Assuntos
Etilenos , Hidrocarbonetos Clorados , Nanopartículas , Tricloroetileno , Poluentes Químicos da Água , Águas Residuárias , Hidrocarbonetos Clorados/química , Tricloroetileno/química , Nanopartículas/química , Poluentes Químicos da Água/química , Oxirredução
3.
Chemosphere ; 350: 141000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135124

RESUMO

Pollution with chloroethenes threaten groundwater resources worldwide. Cis-Dichloroethene (cDCE) and Trichloroethene (TCE) are widespread pollutants that often occur together at contaminated sites, either as primary discharges or as degradation products of anaerobic dechlorination. In this study, comprehensive microcosm experiments were conducted with groundwater samples of seven sites contaminated with chloroethenes. In total, twelve wells with different pollutant concentrations and chloroethene compositions were sampled, and aerobic microcosms including sterile controls were set up. The results revealed interactions as well as interferences between cDCE and TCE. First, co-metabolic cDCE degradation with TCE as growth substrate was detected for the first time in this work. Transformation yields Ty' (molar ratio of co-substrate degraded to primary substrate degraded) of the degradation process were determined and showed a linear relationship with the cDCE/TCE concentration ratio. At low cDCE/TCE ratio, aerobic metabolic TCE degradation can result in complete cDCE removal due to co-metabolic degradation. Secondly, interfering effects were detected at notable cDCE levels resulting in deceleration of TCE degradation and residual concentrations which were also correlating linearly with the cDCE/TCE concentration ratio. These findings are significant for investigating chloroethene contaminated sites and planning remediation strategies. In particular, the efficiency biological remediation methods in the presence of both pollutants can be evaluated more precisely through the knowledge of interactions and interferences. Our study emphasizes that co-contaminants and possible effects of contaminant mixtures on the degradation rates of individual substances should be considered in general.


Assuntos
Poluentes Ambientais , Água Subterrânea , Tricloroetileno , Cloreto de Vinil , Poluentes Químicos da Água , Biodegradação Ambiental , Tricloroetileno/química , Poluentes Químicos da Água/análise , Água Subterrânea/química
4.
Environ Sci Technol ; 57(51): 21917-21926, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091483

RESUMO

Co-occurrence of organic contaminants and arsenic oxoanions occurs often at polluted groundwater sites, but the effect of arsenite on the reactivity of sulfidized nanoscale zerovalent iron (SNZVI) used to remediate groundwater has not been evaluated. Here, we study the interaction of arsenite [As(III)] with SNZVI at the individual-particle scale to better understand the impacts on the SNZVI properties and reactivity. Surface and intraparticle accumulation of As was observed on hydrophilic FeS-Fe0 and hydrophobic FeS2-Fe0 particles, respectively. X-ray absorption spectroscopy indicated the presence of realgar-like As-S and elemental As0 species at low and high As/Fe concentration ratios, respectively. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis identified As-containing particles both with and without Fe. The probability of finding As-containing particles without Fe increased with the S-induced hydrophobicity of SNZVI. The interactions of SNZVI materials with coexisting arsenite inhibited their reactivity with water (∼5.8-230.7-fold), trichloroethylene (∼3.6-67.5-fold), and florfenicol (∼1.1-5.9-fold). However, the overall selectivity toward trichloroethylene and florfenicol relative to water was improved (up to 9.0-fold) because the surface-associated As increased the SNZVI hydrophobicity. These results indicate that reactions of SNZVI with arsenite can remove As from groundwater and improve the properties of SNZVI for dehalogenation selectivity.


Assuntos
Arsênio , Arsenitos , Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Ferro/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Água Subterrânea/química , Água
5.
Environ Res ; 235: 116645, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442263

RESUMO

Bioelectrochemical system is considered as a promising approach for enhanced bio-dechlorination. However, the mechanism of extracellular electron transfer in the dechlorinating consortium is still a controversial issue. In this study, bioelectrochemical systems were established with cathode potential settings at -0.30 V (vs. SHE) for trichloroethylene reduction. The average dechlorination rate (102.0 µM Cl·d-1) of biocathode was 1.36 times higher than that of open circuit (74.7 µM Cl·d-1). Electrochemical characterization via cyclic voltammetry illustrated that electrostimulation promoted electrochemical activity for redox reactions. Moreover, bacterial community structure analyses indicated electrical stimulation facilitated the enrichment of electroactive and dechlorinating populations on cathode. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses revealed that direct electron transfer (via electrically conductive pili, multi-heme c-type cytochromes) between Axonexus and Desulfovibrio/cathode and indirect electron transfer (via riboflavin) for Dehalococcoides enhanced dechlorination process in BES. Overall, this study verifies the effectiveness of electrostimulated bio-dechlorination and provides novel insights into the mechanisms of dechlorination process enhancement in bioelectrochemical systems through electron transfer networks.


Assuntos
Elétrons , Tricloroetileno , Oxirredução , Eletricidade , Eletrodos , Tricloroetileno/química , Biodegradação Ambiental
6.
J Environ Manage ; 344: 118509, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413727

RESUMO

The remediation of volatile chlorinated hydrocarbons in the quasi-vadose zone has become a significant challenge. We applied an integrated approach to assess the biodegradability of trichloroethylene to identify the biotransformation mechanism. The formation of the functional zone biochemical layer was assessed by analyzing the distribution of landfill gas, physical and chemical properties of cover soil, spatial-temporal variations of micro-ecology, biodegradability of landfill cover soil and distributional difference metabolic pathway. Real-time online monitoring showed that trichloroethylene continuously undergoes anaerobic dichlorination and simultaneous aerobic/anaerobic conversion-aerobic co-metabolic degradation on the vertical gradient of the landfill cover system and reduction in trans-1,2-dichloroethylene in the anoxic zone but not 1,1-dichloroethylene. PCR and diversity sequencing revealed the abundance and spatial distribution of known dichlorination-related genes within the landfill cover, with 6.61 ± 0.25 × 104-6.78 ± 0.09 × 106 and 1.17 ± 0.78 × 103-7.82 ± 0.07 × 105 copies per g/soil of pmoA and tceA, respectively. In addition, dominant bacteria and diversity were significantly linked with physicochemical factors, and Mesorhizobium, Pseudoxanthomonas and Gemmatimonas were responsible for biodegradation in the aerobic, anoxic and anaerobic zones. Metagenome sequencing identified 6 degradation pathways of trichloroethylene that may occur in the landfill cover; the main pathway was incomplete dechlorination accompanied by cometabolic degradation. These results indicate that the anoxic zone is important for trichloroethylene degradation.


Assuntos
Tricloroetileno , Tricloroetileno/química , Multiômica , Biodegradação Ambiental , Instalações de Eliminação de Resíduos , Bactérias/genética , Bactérias/metabolismo , Solo , Reação em Cadeia da Polimerase , Tecnologia
7.
Chemosphere ; 333: 138954, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37201606

RESUMO

Groundwater contamination by chlorinated solvents causes potential threats to water resources and human health. Therefore, it is important to develop effective technologies to remediate contaminated groundwater. This study uses biodegradable hydrophilic polymers, hydroxypropyl methylcellulose (HPMC), hydroxyethyl cellulose (HEC) and polyvinyl pyrrolidone (PVP) as binders to manufacture persulfate (PS) tablets for the sustained release of persulfate to treat trichloroethylene (TCE) in groundwater. The release time for different tablets decreases in the order: HPMC (8-15 days) > HEC (7-8 days) > PVP (2-5 days). The efficiency with which persulfate is released is: HPMC (73-79%) > HEC (60-72%) > PVP (12-31%). HPMC is the optimal binder for the manufacture of persulfate tablets and persulfate is released from a tablet of HPMC/PS ratio (wt/wt) of 4/3 for 15 days at a release rate of 1127 mg/day. HPMC/PS/biochar (BC) ratios (wt/wt/wt) between 1/1/0.02 and 1/1/0.0333 are suitable for PS/BC tablets. PS/BC tablets release persulfate for 9-11 days at release rates of 1243 to 1073 mg/day. The addition of too much biochar weakens the structure of the tablets, which results in a rapid release of persulfate. TCE is oxidized by a PS tablet with an efficiency of 85% and a PS/BC tablet eliminates more TCE, with a removal efficiency of 100%, due to oxidation and adsorption during the 15 days of reaction. Oxidation is the predominant mechanism for TCE elimination by a PS/BC tablet. The adsorption of TCE by BC fits well with the pseudo-second-order kinetics and the pseudo-first-order kinetics, which describes the removal of TCE by PS and PS/BC tablets. The results of this study show that a PS/BC tablet can be used in a permeable reactive barrier for long-term passive remediation of groundwater.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Humanos , Tricloroetileno/química , Poluentes Químicos da Água/análise , Oxirredução , Água Subterrânea/química
8.
Water Res ; 240: 120071, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210971

RESUMO

Hydroxyl radical (•OH) oxidation has been identified as a significant pathway for element cycling and contaminant removal in redox fluctuating environments. Fe(II) has been found to be the main electron contributor for •OH production. Despite the recognition of the mechanisms of •OH production from the oxidation of Fe(II) in soils/sediments by O2, the kinetic model about Fe(II) oxidation, •OH production and contaminant removal is not yet clear. To address this knowledge gap, we conducted a series of experiments to explore the variation of different Fe(II) species, •OH and trichloroethylene (TCE, a representative contaminant) during sediment oxygenation, followed by the development of a kinetic model. In this model, Fe(II) species in sediments was divided into three categories based on the sequential chemical extraction method: ion exchangeable Fe(II), surface-adsorbed Fe(II) and mineral structural Fe(II),. Results showed that the kinetic model accurately fitted the concentration time trajectories of different Fe(II) species, •OH and TCE in this study as well as in previous studies. Model analysis indicated that the relative contribution of surface-adsorbed Fe(II) and reactive mineral structural Fe(II) in •OH production was 16.4%-33.9% and 66.1%-83.6%, respectively. However, ion-exchangeable Fe(II) not only fails to contribute to •OH production but also reduces the •OH yield relative to H2O2 decomposition. Poorly reactive mineral structural Fe(II) can serve as an electron pool to regenerate these reactive Fe(II) and facilitate •OH production. Regarding TCE degradation, Fe(II) species plays a dual role in contributing to •OH production while competing with TCE for •OH consumption, with the quenching efficiency being related to their content and reactivity toward •OH. This kinetic model offers a practical approach to describing and predicting •OH production and associated environmental impacts at the oxic-anoxic interface.


Assuntos
Radical Hidroxila , Tricloroetileno , Radical Hidroxila/química , Solo , Peróxido de Hidrogênio/química , Minerais , Oxirredução , Tricloroetileno/química , Compostos Ferrosos
9.
Chemosphere ; 329: 138651, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059204

RESUMO

Trichloroethylene is carcinogenic and poorly degraded by microorganisms in the environment. Advanced Oxidation Technology is considered to be an effective treatment technology for TCE degradation. In this study, a double dielectric barrier discharge (DDBD) reactor was established to decompose TCE. The influence of different condition parameters on DDBD treatment of TCE was investigated to determine the appropriate working conditions. The chemical composition and biotoxicity of TCE degradation products were also investigated. Results showed that when SIE was 300 J L-1, the removal efficiency could reach more than 90%. The energy yield could reach 72.99 g kWh-1 at low SIE and gradually decreased with the increase of SIE. The k of the Non-thermal plasma (NTP) treatment of TCE was about 0.01 L J-1. DDBD degradation products were mainly polychlorinated organic compounds and produced more than 373 mg m-3 ozone. Moreover, a plausible TCE degradation mechanism in the DDBD reactors was proposed. Lastly, the ecological safety and biotoxicity were evaluated, indicating that the generation of chlorinated organic products was the main cause of elevated acute biotoxicity.


Assuntos
Ozônio , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Ozônio/química , Oxirredução , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 878: 162720, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36931519

RESUMO

Trichloroethylene (TCE) is one of the most prevalent contaminants with long-term persistence and a strong carcinogenic risk. Biological dechlorination has gradually become the mainstream method due to its advantages of low treatment cost and high environmental friendliness. However, microorganisms are easily restricted by environmental factors, such as an insufficient energy supply and a slow biological dechlorination process. This study focused on the coupled degradation of TCE with the combination of microorganisms and assistant materials (biochar, nZVI, nZVI modified biochar, HPO3 modified biochar), and set up microorganisms (alone) and materials (alone) as separate controls. Biochar provided nutrients, increased contact with pollutants, and promoted electron transfer to improve TCE degradation, although it did not change the pathway of degradation. The coupled treatment with anaerobic microorganisms (Micro) and 1 g/L unmodified biochar (BC) had the strongest degradation capacity. Compared with microorganisms alone, the addition of biochar resulted in the complete removal of TCE within 4 days. The influence of ambient temperature was mainly related to microbial activity, and 35 °C showed better degradation than 20 °C. Under 20 °C, 1 g/L of nZVI significantly promoted microbial dechlorination. As the dosage increased to 2 g/L and 4 g/L, nZVI showed a strong toxic effect. After 16 days, TCE was completely converted to ethylene by Micro-BC with C3H5O3Na, while 4.40 µmol dichloroethane (DCE) and 1.48 µmol vinyl chloride (VC) remained in the treatment with Micro-BC alone. As an electron acceptor, NaNO3 directly competed with TCE in the reduction process, which decreased the reduction efficiency of TCE. These findings provide a better understanding of the mechanism of the chemical materials coupling microbial dechlorination process and an optimal treatment method for trichloroethylene degradation.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Carbono , Tricloroetileno/química , Ferro/química , Biodegradação Ambiental , Poluentes Químicos da Água/química
11.
Environ Sci Technol ; 57(8): 3323-3333, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36729963

RESUMO

Chemical sulfidation has been considered as an effective strategy to improve the reactivity of zero-valent iron (S-ZVI). However, sulfidation is a widespread biogeochemical process in nature, which inspired us to explore the biogenetic sulfidation of ZVI (BS-ZVI) with sulfate-reducing bacteria (SRB). BS-ZVI could degrade 96.3% of trichloroethylene (TCE) to acetylene, ethene, ethane, and dichloroethene, comparable to S-ZVI (97.0%) with the same S/Fe ratio (i.e., 0.1). However, S-ZVI (0.21 d-1) exhibited a faster degradation rate than BS-ZVI (0.17 d-1) based on pseudo-first-order kinetic fitting due to extracellular polymeric substances (EPSs) excreted from SRB. Organic components of EPSs, including polysaccharides, humic acid-like substances, and proteins in BS-ZVI, were detected with 3D-EEM spectroscopy and FT-IR analysis. The hemiacetal groups and redox-activated protein in EPS did not affect TCE degradation, while the acetylation degree of EPS increased with the concentration of ZVI and S/Fe, thus inhibiting the TCE degradation. A low concentration of HA-like substances attached to BS-ZVI materials promoted electron transport. However, EPS formed a protective layer on the surface of BS-ZVI materials, reducing its TCE reaction rate. Overall, this study showed a comparable performance enhancement of ZVI toward TCE degradation through biogenetic sulfidation and provided a new alternative method for the sulfidation of ZVI.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Tricloroetileno/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Ferro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
12.
Environ Sci Pollut Res Int ; 30(6): 14240-14252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36149563

RESUMO

Sulfidated nanoscale zerovalent iron (S-nZVI) supported on a flower spherical Mg(OH)2 with different Mg/Fe ration were successfully synthesized. The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The results showed that S-nZVI particles were well dispersed on the petals of the flower spherical Mg(OH)2. The influence of factors, including the initial solution pH, Mg/Fe, S/Fe were studied. The trichloroethylene (TCE) adsorption data on Mg(OH)2 and S-nZVI @Mg(OH)2 fit well to a Langmuir isotherm model, and the maximum adsorption of S-nZVI @Mg(OH)2 was 253.55 mg/g, which was 2.6-fold of S-nZVI. Meanwhile, the S-nZVI @Mg(OH)2 composite expanded the pH selection range of S-nZVI from 2 to 11. Cycling experiments showed that removal rate was 58.3% for the 5th cycle. TCE removal was due to synergistic action of reduction coupled with adsorption. During this process, 65.43% of total remove TCE from ion chromatography data was reduced and 34.57% of total remove TCE was adsorbed finally. At the same time, adsorption favors reduction. These observations indicated that the S-nZVI @Mg(OH)2 can be considered as potential adsorbents to remove TCE for environment remediation.


Assuntos
Recuperação e Remediação Ambiental , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Ferro/química , Adsorção , Difração de Raios X , Poluentes Químicos da Água/química
13.
Water Res ; 224: 119046, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096026

RESUMO

Thermally activated peroxydisulfate In Situ Chemical Oxidation (TAP-ISCO) is often applied for the remediation of soil-sorbed hydrophobic organic contaminants (HOCs) and nonaqueous phase liquids (NAPLs), which act as long-term sources of groundwater contamination. TAP-ISCO benefits from improved desorption/dissolution of organic contaminants into the aqueous phase and efficient activation of peroxydisulfate at elevated temperatures, but the primary limitation of TAP-ISCO is the short lifetime of peroxydisulfate (therefore the availability of reactive radical species). To resolve this problem, coupling of peroxide stabilizers with TAP were tested. The compatibility of seven representative commercial organic and inorganic peroxide stabilizers, including sodium stannate, trisodium phosphate, sodium pyrophosphate, sodium silicate, sodium citrate, ethylene diamine tetra methylene phosphonic acid and ethylenediaminetetraacetic acid disodium salt, with TAP in aqueous solutions and solutions containing goethite or soil particles were first studied. The effects of stabilizers on the formation, distribution and reactivity of reactive oxygen species were then investigated through electron paramagnetic resonance (EPR) spin-trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide, chemical probe experiments using anisole, nitrobenzene and hexachloroethane, and biphasic trichloroethylene (TCE) dense nonaqueous phase liquids (DNAPLs) TAP-ISCO mimicking experiments. The results indicate that organic stabilizers significantly accelerate peroxydisulfate decomposition at both ambient and elevated temperatures. In contrast, inorganic stabilizers can markedly increase peroxydisulfate longevity by suppressing the acid-catalyzed peroxydisulfate decomposition, quenching radical-chain acceleration, and sequestering transition metal species. In addition, TAP systems containing inorganic stabilizers can effectively generate a variety of reactive radical species, including SO4•-, HO•, and O2•-, and improve the oxidation of anisole and nitrobenzene, though suppressing the reduction of hexachloroethane to some extent. Especially, suitable inorganic stabilizers (e.g., trisodium phosphate) can effectively improve TAP oxidation of TCE DNAPL while suppressing peroxydisulfate decomposition. Overall, this study provides the fundamental basis of coupling TAP-ISCO with peroxide stabilizers.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Anisóis , Ácido Edético , Etano/análogos & derivados , Etilenos , Hidrocarbonetos Clorados , Nitrobenzenos , Oxirredução , Peróxidos/química , Fosfatos , Espécies Reativas de Oxigênio/química , Sódio , Citrato de Sódio , Solo/química , Tricloroetileno/química , Poluentes Químicos da Água/química
14.
Sci Total Environ ; 853: 158469, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36058331

RESUMO

Electron efficiency (or electron selectivity, ɛe) is an important quantitative criterion for zero-valent iron treatment of organohalide contaminated groundwater. The aim of this quantitative study was the systematic exploration and comparison of the effects of the Pd/Fe and S/Fe molar ratios (i.e., [Pd/Fe] and [S/Fe]), trichloroethylene (TCE) concentrations ([TCE]), pH solution, aging time, and water matrices on the ɛe of Pd-nZVI and S-nZVI. To this end, we used TCE as a probe contaminant. The ɛe of Pd-nZVI increased and then decreased with [Pd/Fe], while that of S-nZVI increased with [S/Fe], as more hydrophobic FeS2 was formed on S-nZVI at higher [S/Fe]. The εe of S-nZVI and Pd-nZVI increased with increasing [TCE]. Specifically, the εe of S-nZVI and Pd-nZVI at [TCE] of 200 ppm increased by 24.9 % and 79.3 %, respectively, compared with that at [TCE] of 10 ppm. As the H2 evolution reaction (HER) was more sensitive to surface passivation than TCE dechlorination, the εe of S-nZVI and Pd-nZVI under alkaline conditions was higher than that under basic conditions, and increased by 11.7 % and 37.8 %, respectively, at pH 10 relative to that at pH 6. The εe also increased with the aging time of the S-nZVI and Pd-nZVI particles; the increase was by 27.2 % and 59.6 %, respectively, at aging time of 30 d compared with that of the fresh ones. The ɛe of both particles were higher in artificial groundwater (AGW) than in real groundwater (RGW). For all batch experiments, the εe of S-nZVI increased over the reaction time and tended to outperform that of Pd-nZVI, even though the εe of Pd-nZVI was higher than that of S-nZVI at the initial stage of TCE dechlorination, thereby justifying the longevity of S-nZVI.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Elétrons , Água Subterrânea/química , Ferro/química , Poluentes Químicos da Água/química , Água
15.
Chemosphere ; 307(Pt 4): 136080, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988762

RESUMO

Various substrates have been used to stimulate habitat microbes in chloroethene-contaminated groundwater, however, the specific efficiency and minimum growth of microbes have rarely been studied. This study investigated the effects of seven substrates on trichloroethene (TCE) dechlorination by augmentation of groundwater with Dehalococcoides mccartyi NIT01 and its contribution to the microbial community. Three out of eight test groups completed dechlorination of 1 mM TCE-to-ethene in varying durations; groundwater supplemented with formate (FOR) required 78 days, whereas the microcosms with lactate (LAC) and citrate (CIT) required approximately twice as long (143 days). The calculated efficiency of how much produced H2 was used in dechlorination indicated a higher efficiency in FOR (36%) compared with LAC (1.9%) or CIT (2.9%). FOR showed lower microbial growth (3.4 × 105 copies/mL) than LAC (1.5 × 106) or CIT (4.4 × 106), and maintained a higher Shannon diversity index (5.65) than LAC (4.97) and CIT (4.30). The rapid and higher H2 transfer efficiency with lower bacterial growth by using formate was attributed to the slightly positive Gibbs free energy identified in H2 production requiring a H2-utilizer, lower carbon in the molecule, and adaptation to metabolic potential of the original groundwater microbiome. Formate is, therefore, a promising electron donor for rapid Dehalococcoides-augmented remediation with minimum bacterial growth. Sequential transferring of the FOR culture successfully maintained TCE-to-ethene dechlorination activity and enriched the members of genera Dehalococcoides (33%), Methanosphaerula (23%), Rectinema (13%), and Desulfitobacterium (5.6%). This suggests that formate is transferred to H2 and acetate, and provided to Dehalococcoides.


Assuntos
Chloroflexi , Água Subterrânea , Microbiota , Tricloroetileno , Biodegradação Ambiental , Carbono/metabolismo , Chloroflexi/metabolismo , Citratos , Dehalococcoides , Elétrons , Etilenos , Formiatos/metabolismo , Água Subterrânea/microbiologia , Lactatos/metabolismo , RNA Ribossômico 16S/metabolismo , Tricloroetileno/química
16.
Water Res ; 222: 118871, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872521

RESUMO

Herein, we report the significant effects of natural organic matter contained in natural zeolite (Z-NOM) on the physicochemical characteristics of a Ni/Fe@natural zeolite (NF@NZ) catalyst and its decontamination performance toward the dechlorination of trichloroethylene (TCE). Z-NOM predominantly consists of humic-like substances and has demonstrable utility in the synthesis of bimetallic catalysts. Compared to NF@NZ600C (devoid of Z-NOM), NF@NZ had increased dispersibility and mobility and showed significant enhancement in the catalytic dechlorination of TCE owing to the encapsulation of Ni0/Fe0 nanoparticles by Z-NOM. The results of corrosion experiments, spectroscopic analyses, and H2 production experiments confirmed that Ni0 acted as an efficient cocatalyst with Fe0 to enhance the dechlorination of TCE to ethane, and Z-NOM-capped Ni0 showed improved adsorption of TCE and atomic hydrogen on their reactive sites and oxidation resistance. The density functional theory (DFT) studies have substantiated the improved adsorption of TCE due to the presence of NOM (especially by COOH structure) and the enhanced charge density at the Ni site in the Ni/Fe bimetal alloy for the stronger adsorption of hydrogen atoms that ultimately enhanced the TCE reduction reaction. These findings illustrate the efficiency of NOM containing natural minerals toward the synthesis of bimetallic catalysts for practical applications.


Assuntos
Tricloroetileno , Zeolitas , Catálise , Substâncias Húmicas , Hidrogênio , Ferro/química , Tricloroetileno/química
17.
Sci Total Environ ; 842: 156866, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753481

RESUMO

Halogenated organic solvents are the most commonly detected pollutants in groundwater and are particularly toxic and harmful. How to separate these dense nonaqueous phase liquid (DNAPL) pollutants efficiently from groundwater has become an important research question. Here, a novel hydrocyclone with annular overflow structure was designed, which eliminated the short-circuit flow of the traditional hydrocyclone and solved the problem of overflow entrainment caused by the enrichment of droplets near the locus of zero vertical velocities (LZVV) into turbulence. The flow field characteristics of this novel hydrocyclone were studied using Computational Fluid Dynamics (CFD) simulation and compared with the traditional hydrocyclone. It was found that the annular gap structure of the novel hydrocyclone increased the tangential velocity of the outer vortex. Moreover, the radius of the LZVV was expanded outward by 0.17 mm, which reduced the possibility of droplets with small particle sizes in the second phase escaping from the overflow pipe. The collective effect was to eliminate the short-circuit flow. This novel hydrocyclone was able to separate DNAPL pollutants with low consumption and high efficiency, across a range of inlet velocity from 4 to 6 m/s. The maximum separation efficiency was 99.91 %. In addition, with trichloroethylene (TCE) as the target pollutant, the maximum volume fraction of the dispersed phase in the hydrocyclone was located on the side wall of the hydrocyclone. Taken together, we believe that this work will provide a low-cost, efficient separation method for the separation of groundwater- contaminated liquid mixtures. Furthermore, it has broad application prospects in the field of heterotopic remediation of groundwater.


Assuntos
Poluentes Ambientais , Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tamanho da Partícula , Solventes , Tricloroetileno/química , Poluentes Químicos da Água/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-35627834

RESUMO

Trichloroethylene (TCE) is one of the most widely distributed pollutants in groundwater and poses serious risks to the environment and human health. In this study, sulfidated nanoscale zero-valent iron (S-nZVI) materials with different Fe/S molar ratios were synthesized by one-step methods. These materials degraded TCE in groundwater and followed a pathway that did not involve the production of toxic byproducts such as dichloroethenes (DCEs) and vinyl chloride (VC). The effects of sulfur content on TCE dechlorination by S-nZVI were thoroughly investigated in terms of TCE-removal efficiency, H2 evolution, and reaction rate. X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) characterizations confirmed Fe(0) levels in S-nZVI were larger than for zero-valent iron (nZVI). An Fe/S molar ratio of 10 provided the highest TCE-removal efficiencies. Compared with nZVI, the 24-h TCE removal efficiencies of S-nZVI (Fe/S = 10) increased from 30.2% to 92.6%, and the Fe(0) consumed during a side-reaction of H2 evolution dropped from 77.0% to 12.8%. This indicated the incorporation of sulfur effectively inhibited H2 evolution and allowed more Fe(0) to react with TCE. Moreover, the pseudo-first-order kinetic rate constants of S-nZVI materials increased by up to 485% compared to nZVI. In addition, a TCE degradation was proposed based on the variation of detected degradation products. Noting that acetylene, ethylene, and ethane were detected rather than DCEs and VC confirmed that TCE degradation followed ß-elimination with acetylene as the intermediate. These results demonstrated that sulfide modification significantly enhanced nZVI performance for TCE degradation, minimized toxic-byproduct formation, and mitigated health risks. This work provides some insight into the remediation of chlorinated-organic-compound-contaminated groundwater and protection from secondary pollution during remediation by adjusting the degradation pathway.


Assuntos
Água Subterrânea , Tricloroetileno , Alcinos , Água Subterrânea/química , Humanos , Ferro/química , Enxofre , Tricloroetileno/química
19.
J Hazard Mater ; 433: 128744, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390618

RESUMO

Research on the stepwise hydrogenation dechlorination of chlorinated alkenes forms an important basis for eliminating toxic intermediate incomplete dechlorination products. The low-cost Fe-Ni/rGO/Ni foam cathode both supplied electrons and exhibited hydrogen conversion activity, and it was an excellent tool for the study of stepwise dechlorination. Electrochemical reduction experiments were carried out on homologous chlorinated alkenes. The conditions affecting the dechlorination efficiency and the repeatability of the catalytic electrode were analyzed. The trichloroethylene (TCE) removal rates were all above 78.0% over 8 cycles. The maximum EHDC efficiency was as high as 86.1%, and the faradaic efficiency was over 78.8%. Electrochemical methods combined with the calculation of the electron transfer number are proposed to verify the good hydrogenation ability of the electrode and the stepwise reduction ability at proper voltages. The stepwise dechlorination electroreduction characteristics of chlorinated alkenes were explained. The C-Cl bond dissociation enthalpies of chlorinated alkenes were calculated by density functional theory (DFT), and the 4-Cl and 5-Cl of TCE were expected to be removed first. The stepwise cleavage of chlorinated alkenes on Fe-Ni/rGO/Ni foam during dichlorination provided a reference for controlling the reduction products of chlorinated alkenes and preventing the pollution caused by toxic intermediate products formed during incomplete dechlorination.


Assuntos
Elétrons , Tricloroetileno , Alcenos , Eletrodos , Grafite , Tricloroetileno/química
20.
Water Res ; 216: 118286, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339054

RESUMO

Coupling microscale zero-valent iron (mZVI) and autotrophic hydrogen bacteria (AHB) has gained increasing attention owing to its potential to improve dechlorination performance by bridging H2 donors and acceptors. However, few studies have attempted to test its sustainable remediation performance and to comprehensively unveil the governing mechanisms. This study systematically compared the performances of different systems (mZVI, H2-AHB, and mZVI-AHB) for trichloroethylene (TCE) removal, and further optimized dechlorination and H2 evolution of mZVI-AHB synchronously by regulating the mZVI particle size and dosage to achieve a win-win remediation solution. The final removal efficiency and removal rate of TCE by mZVI-AHB were 1.67-fold and 5.30-fold of those by mZVI alone respectively, and mZVI-AHB resulted in more complete dechlorination than H2-AHB alone. Combining H2 evolution kinetics, material characterization data, and bacterial community analysis results, the improved dechlorination performance of mZVI-AHB was mainly due to the following mechanisms: H2 generated by mZVI corrosion was efficiently utilized by AHB, lasting corrosion of mZVI was facilitated by AHB, and dechlorination functional bacteria were highly enriched by mZVI. Finally, the remediation performance of mZVI-AHB with different mZVI particle sizes and dosages was evaluated comprehensively in terms of dechlorination reactivity, H2 utilization efficiency and chemical cost, and suggestions for possible engineering applications are provided.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Bactérias , Água Subterrânea/química , Hidrogênio/análise , Ferro/química , Tricloroetileno/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...